Small Business Innovation Research/Small Business Tech Transfer

# Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II



Completed Technology Project (2016 - 2019)

#### **Project Introduction**

Cornerstone Research Group Inc. (CRG) proposes to continue efforts from the 2015 NASA SBIR Phase I topic H14.03 ?Reversible Copolymer Materials for FDM 3D Printing of Non-Standard Plastics.? CRGs offers NASA the ability to reprocess space mission waste packaging plastics as an In-Situ resource for in space manufacturing via Fused Deposition Modeling (FDM) type 3-D printing of replacement tools, parts, and devices. This innovation is enabling for space exploration, the application of CRG?s reversible thermoset (RVT) polymers combined with a plastic recycling, blending, and extrusion process will allow current and future packaging materials to be processed into a copolymer blend filament suited to FDM 3-D printing system. This approach offers two implementation routes including; (1) An RVT additive that can be combined with existing waste packaging during a reclamation process to produce 3-D printer filament and (2) A RVT based replacement packaging material that can be directly reclaimed into 3-D printer filament. The material properties of 3-D printer filament from the RVT-based reclamation process can be tuned for mechanical performance (stiffness, flexibility) by adjusting the blend ratios of reclaimed waste packaging: RVT. This will provide NASA with a means to generate 3-D printer feedstocks with varying mechanical performance from on-hand packaging plastics without the need for separate 3-D printer material payloads. CRG has already demonstrated the efficacy of RVT additive in reclamation of NASA?s packaging materials in Phase I by producing a copolymer blend of RVT with NASA packaging, producing a FDM printer filament with the reclaimed packaging, and successfully 3-D printing the resulting reclaimed packaging material. CRG?s proposed approach to further develop thermally-reversible polymer materials to reclaim NASA?s packaging will provide a material and processing technology readiness level (TRL) of 5 at the conclusion of the Phase II effort.



Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 2 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Images                        | 3 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



# Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II



Completed Technology Project (2016 - 2019)

### **Primary U.S. Work Locations and Key Partners**



| Organizations Performing Work           | Role         | Туре     | Location    |
|-----------------------------------------|--------------|----------|-------------|
| Cornerstone Research                    | Lead         | Industry | Miamisburg, |
| Group, Inc.                             | Organization |          | Ohio        |
| <ul><li>Marshall Space Flight</li></ul> | Supporting   | NASA     | Huntsville, |
| Center(MSFC)                            | Organization | Center   | Alabama     |

| Primary U.S. Work Locations |      |  |  |
|-----------------------------|------|--|--|
| Alabama                     | Ohio |  |  |

#### **Project Transitions**

April 2016: Project Start



August 2019: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/141270)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Cornerstone Research Group, Inc.

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

## **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Brian E Henslee

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II



Completed Technology Project (2016 - 2019)

#### **Images**



#### **Briefing Chart Image**

Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II (https://techport.nasa.gov/imag e/136904)



#### **Final Summary Chart Image**

Reversible Copolymer Materials for FDM 3-D Printing of Non-Standard Plastics, Phase II (https://techport.nasa.gov/imag e/125740)

## **Technology Areas**

#### **Primary:**

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
  - └ TX12.4 Manufacturing
    - ☐ TX12.4.4 Sustainable Manufacturing

### **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

